美国宾夕法尼亚大学工程师开发了一种新型芯片,它使用光而不是电来执行训练人工智能(AI)所必需的复杂数学运算。该芯片有可能从根本上加快计算机的处理速度,同时还可降低能源消耗。相关研究发表在最新一期《自然·光子学》上。
该芯片首次将本杰明·富兰克林奖章获得者纳德·恩赫塔在纳米尺度上操纵材料的开创性研究与硅光子(SiPh)平台结合起来。前者涉及利用光进行数学计算;后者使用的是硅,即一种用于大规模生产计算机芯片的廉价且丰富的元素。
光波与物质的相互作用代表着开发计算机的一种可能途径,这种方法不受当今芯片局限性的限制。新型芯片的原理本质上与20世纪60年代计算革命初期芯片的原理相同。
研究人员在论文中描述了这种芯片的开发过程。他们的目标是开发一个执行向量矩阵乘法的平台。向量矩阵乘法是神经网络开发和功能中的核心数学运算,而神经网络是当今支持AI工具的计算机体系结构。
恩赫塔解释说,他们可将硅晶片做得更薄,比如150纳米,并且使用高度不均匀的硅晶片,但这仅限于特定区域。在无需添加任何其他材料的情况下,这些高度的变化提供了一种控制光在芯片中传播的方法,因为高度的变化可导致光以特定的模式散射,从而允许芯片以光速进行数学计算。
除了更快的速度和更少的能耗之外,新型芯片还具有隐私优势。由于许多计算可同时进行,因此无需在计算机的工作内存中存储敏感信息,从而使采用此类技术的未来计算机几乎无法被入侵。
来源:科技日报
世界智能大会 WORLD INTELLIGENCE CONGRESS
津ICP备17008349号-3津公网安备 12010302002098号 官方声明